

Enhancing Hydrologic Forecasting in the Rio Grande Basin

Develop a hydrological model with forecasting capabilities and prototype a decision support tool for water supply management in the Rio Grande Basin, leveraging NASA data, models, and technologies.

Part-2: Joseph Gutenson¹, Chandana Gangodagamage², William Kirkey¹

¹Research, Applied Technology, Education, and Service (RATES), Edinburg, TX USA; ²OeilSat, LLC, Hanover, MD USA

Water Watch Analytic (WWA): Model solutions derived from direct NASA observations and modeling approaches

- We employ satellite Earth observation to measure surface water extent and stream flow discharge using SWOT, Sentinel-1 (SAR), Sentinel-2, Landsat, and ICESat-2. This includes retrospective analysis (2015-2024) and near real-time monitoring at 10m input model resolutions.
- We developed three efficient water balance models for the cloud using monthly data from NASA's GLDAS models (NOAH, VIC, and CLSM). These models—Model-N, Model-V, and Model-C—rely on precipitation and air temperature inputs to accurately replicate evaporation, runoff, and soil moisture.

Water Watch Analytics (WWA) and Inundation

Model:

Contains 3 scalable models that mimic runoff & evaporation productions of the 3-LSMs (land surface models) the NASA GLDAS system – NOAH3.6, VIC2.0, and CLSM at the daily time scale.

Inputs:

Precipitation and T2M

Daily evaporation, runoff and soil moisture

Daily total runoff in the Watershed (either from WBM or an outside source)

Daily streamflows on river reaches in the watershed

Flood Inundation Model Model: **Global River Data** Assimilation System (GRDAS) Inputs: Daily total runoff in the Watershed (either from WBM or an outside source), Individual width, depth, surface water extent, slope observations Harmonized River Geometry & likelihood in

Inundations

Spatial maps showing the computed Root Mean Square Error (RMSE) of daily runoff (left) and evaporation (right) between WWA's Model N and GLDAS NOAH model for the period 2017-2021

Snapshots of preliminary results: In early February 2024, sections of California experienced widespread flooding, strong winds, and power outages due to the impact of two atmospheric rivers.

Snapshots of preliminary results: Congo Basin Jan 18, 2024 peak flood level since 1970

Snapshots of preliminary results: Rio Grande Basin

Accessing NASA Data for Non-Expert Users(http://fluvisat.com)

Accessing NASA Data for Non-Expert Users(http://fluvisat.com)

Fluvisat.com

Accessing NASA Data for Non-Expert Users(http:// fluvisat.com)

Home Mission Science Applications News & Events Resources

NEWS | October 27, 2020

NASA Funds Projects to Make Geosciences Data More Accessible

Credits: Chandana Gangodagamage, NASA Goddard Space Flight Center/University of Maryland