

Surface Water & Ocean Topography (SWOT) Applications

Cassie Nickles, Matthew Bonnema, Angelica Rodriguez

Jet Propulsion Laboratory, California Institute of Technology

2024 Annual Meeting of the Western Water Applications Office (WWAO) May 1, 2024

> Credit: NASA Blue Marble © 2024 California Institute of Technology. Government sponsorship acknowledged

SWOT measures global ocean surface topography and land surface water extents & elevation with great accuracy using interferometry.

SWO

Hydrology Measurements Simplified

Requirements: Rivers > 100 m wide Lakes > 250 m² Future Derived Products:

- River flow (i.e. discharge)
 - Lake/ reservoir volume change

SWO

© 2024 California Institute of Technology. Government sponsorship acknowledged.

SWOT Applications Areas

SWOT

https://swot.jpl.nasa.gov/applications/applications-areas/

SWOT Early Adopters Program

• SWOT Applications Program since 2012

https://swot.jpl.nasa.gov/applications

SWOT EA Organization Type

31%

19%

6%

• 40 SWOT Early Adopters

SWO

• U.S. and International leadership – NASA/CNES

Figure 2. Forty SWOT Early Adopter teams span the globe with a wide range of operational and applied science project topics. Visit swot.jpl.nasa.gov/applications/early-adopters/ for information about all SWOT EA projects.

EU

Federal Govt

Private Research Inst.
 Private Sector

Non Profit

State Govt

University

Water Information from SPace (WISP) Dashboard

 SWOT River data timeseries alongside USGS gauge data

SWOT

- Uses Hydrocron tool developed by PO.DAAC
- Not yet publicly available, but in the works!

Texas Water Development Board (TWDB), Austin, TX Major Texas reservoirs (capacity is

 Estimation of Volumetric Evaporative Water Loss from Unmonitored Reservoirs in Texas

SWO

- SWOT provides surface area for reservoirs and TWDB plans to compute "statewide" evaporation losses (evaporation - precipitation)
- Leads: Nelun Fernando & John Zhu

IIT - Bombay

Work in Progress:

- Lake Data Inventory
- Floods on Indian Rivers through Discharge Estimation
- Extending historical gauge network over Indian river reaches
- Hydrologic model calibration over the Indian Basin
- Sentinel-1 based Inland water dynamics Mapping System (SIMS) Toolkit

Leads: Indu Jaya & Manu Soman

Mater in Sight

Swedish startup

- Developed SMS & WhatsApp for hydro gauge readers in Least Developed Countries (LDC)
- SWOT EA project area Africa (Malawi, Mozambique, Sierra Leone)
- Smartphone observations of river & rainfall levels sent to database for govt operational agencies, compare to SWOT
- Flood thresholds & equipment inventory

SWOT Ocean Early Adopters

SWOI

SWOT Ocean swath data and nadir data already integrated!

 Ocean weather forecasts to reduce fuel and emissions for maritime shipping

Adding SWOT gives
 50-100% more
 observations

Data Products Overview

SWOT

Hydrology-Relevant Level 2 SWOT Products

- Water Mask Pixel Cloud NetCDF
- Pixel Cloud Vector Attribute NetCDF
- Raster NetCDF
- River Vector Shapefile
- Lake Vector Shapefile
- Cycle Average River Vector Shapefile
- Cycle Average Lake Vector Shapefile
- Floodplain Digital Elevation Model

L2_HR_PIXC L2_HR_PIXCVec L2_HR_Raster L2_HR_RiverSP L2_HR_LakeSP L2_HR_RiverAvg L2_HR_LakeAvg L2_HR_FPDEM*

Hydrology-Relevant Level 2 SWOT Products

Pixel Cloud NetCDF

Raster NetCDF

Oceanography-Relevant SWOT Products

- Operational Radiometer NetCDF
- Interim Radiometer NetCDF
- Radiometer NetCDF
- Operational Nadir Altimetry NetCDF
- Interim Nadir Altimetry NetCDF
- Nadir Altimetry NetCDF
- KaRIn Sea Surface Height NetCDF

L2_RAD_OGDR L2_RAD_IGDR L2_RAD_GDR L2_NALT_OGDR L2_NALT_IGDR L2_NALT_GDR L2_LR_SSH

Oceanography-Relevant SWOT Products

KaRIn Sea Surface Height

Radiometer & Nadir products

Tools & Resources

SWOT

Hydrocron Timeseries API

Input: Water feature ID (SWOT River reach, node) Future: lake ID, or geospatial bounding box

Output: timeseries in CSV or GeoJSON

Example Applications: populate time series in a web dashboard for a river reach, ingest time series into models, faster analysis in programmatic workflows

GitHub Collaboration Space

SWO

SWOT Community

This is a code space for the global SWOT mission community. We share experience, code, research and much more. Our mission is to increase the value of SWOT.

https://github.com/SWOT-community

Resources, Tips, & Tutorials!

PO.DAAC Cookbook: SWOT Chapter

Search via GUI Programmatically via Command Line Spatial Coverage Tips for SWOT HR Spatial Search Access & Visualization SWOT Hydrology SWOT Oceanography **GIS Workflows** StoryMap Shapefile Exploration Transform Data

SWOT

- Hydrology Time Series
- NetCDF to Geotiff

SWOT

SWOT Data Tutorials

SWOT Background

The Surface Water and Ocean Topography (SWOT) mission aims to provide valuable data and information about the world's oceans and its terrestrial surface water such as lakes, rivers, and wetlands. SWOT is jointly developed by NASA and Centre National D'Etudes Spatiales (CNES), with contributions from the Canadian Space Agency (CSA) and United Kingdom Space Agency (UKSA). The satellite launched on December 16, 2022. PO.DAAC is the NASA archive for the SWOT mission, and has made data available via the NASA Earthdata Cloud (hosted in AWS) with direct download capabilities available. PO.DAAC hosts a variety of <u>SWOT data products</u>, whose product description documents can be found in the chart listing each dataset. More information can be found on <u>PO.DAAC's SWOT</u> <u>webpage</u>.

SWOT Data Resources & Tutorials

https://podaac.github.io/tutorials/quarto_text/SWOT.html

Physical Oceanography Distributed Active Archive Ce

SW

Thank you! Questions?

https://swot.jpl.nasa.gov/applications https://swot.cnes.fr/en/search/site/SWOT

Contact:

SWC

cassandra.l.nickles@jpl.nasa.gov matthew.g.bonnema@jpl.nasa.gov angelica.rodriguez@jpl.nasa.gov

Extra Slides

SWOT

.

Tools for accessing SWOT data - Cheatsheet

- Learn/Information
 - PO.DAAC Dataset Mission Page and Landing Pages https://podaac.jpl.nasa.gov/SWOT?sections=data .

Ocean

Hydro

Coast

PO.DAAC Cookbook - SWOT Chapter https://podaac.github.io/tutorials/guarto_text/SWOT.html •

- Find Data Map GUI interface
 - Search & Access in Earthdata Search • https://search.earthdata.nasa.gov/search?g=SWOT%20HR&long=-0.0703125

- Access Command line/automated scripts
 - Subscriber/Downloader https://podaac.github.io/tutorials/guarto_text/SWOT.html •

- Access & Subset GUI
 - HiTIDE https://hitide.podaac.earthdatacloud.nasa.gov/ •

- Access Cloud native, Big data, ML
 - in-cloud access available: example for LR ocean, example for HR hydro
- Access & Explore In development or planning phase:
 - Hvdrocron Timeseries API
 - SWODLR On-demand Raster in development (Beta, Spring 2024)
 - GIS-friendly, e.g. web services (e.g. WFS) in development (Beta, mid-2024) •
 - QGIS and ArcGIS local: download and open works now •
 - Exploratory Analysis in SOTO by Worldview early 2025

Sea surface height anomaly (SSHA) from SWOT Ka-band Radar Interferometer (KaRIn) over one full 21-day cycle Same field, difference perspectives

2023-08-24 10:43 Pass: 374

DC Reflective Pool

Confluences of Ganges, Brahmaputra, and Meghna rivers in Bangladesh

x x x 004 189 098F 20230928T133329

Band 1 90 0

V 🗰 SWOT

100m UTM460

These are South Asia's biggest rivers and together flow to the Bay of Bengal. Flooding is guaranteed every year with the monsoon season

Ganges River meets Brahmaputra River

Padma River (Ganges+Brahmaputra) meets Meghna River

File: SWOT_L2_HR_Raster_100m_UTM46Q_N_x_x_004_189_098F_20230928T133329_20230928T133350_PIB0_01.nc Variable: sig0 Visual approach; blue scale ranging from 0 to 90 dB in ten increments of 10 dB.

PIB0_01-sig0

20230928T133350

Credit: C. David, J. Wade, A. Cerbelaud, M. Tom

SWOT Captures the Nile River Flowing Through Cairo, Egypt

5 10

0

Sentinel-2 imagery produced from ESA remote sensing data (European Space Agency – ESA).

0 2.5 5

File Information: Cycle: 001 Pass: 318 Scene: 051F Date: 08-01-2023 Time: T133912 - T133933

Processing Approach: Show Water Surface Elevation where: [Dark_frac > 0 OR Sigma0 > 100] AND [Cross_track > 23,000]

Credit: C. David, J. Wade, A. Cerbelaud, M. Tom

March 6, 2024 SWOT Data Release, v2.0

https://podaac.jpl.nasa.gov/announcements/2024-03-06-SWOT-KaRIn-Science-Data-Products-Release

Forward stream and reprocessed SWOT KaRIn Science Data Products Release:

Encourage users to review the **Release Note** closely to familiarize themselves with the details of the release.

Section 6: Known Features and Issues - Helpful!

This release includes:

- Reprocessed global low rate (LR) ocean products spanning Nov 23, 2023 – Jan 25, 2024 and forward processing from the science phase (21-day orbit).
- Forward processing reprocessed global high rate (HR) hydrology products from Jan 25, 2024 onward from the science phase (21-day orbit).
- Reprocessing of science data products from March 30, 2023 to January 25, 2024 is ongoing and will be released as they become available.

The LR products include:

 Level 1B KaRIn Low Rate Interferogram Data Product (SWOT_L1B_LR_INTF_2.0 (DOI: 10.5067/SWOT-INTF-2.0)

 Level 2 KaRIn Low Rate Sea Surface Height Data Product (SWOT_L2_LR_SSH_2.0 (DOI: <u>10.5067/SWOT-SSH-2.0</u>))

The HR products include:

Tip: these

are data

product shortnames!

- 1. Level 1B KaRIn High Rate Single Look Complex Product (SWOT_L1B_HR_SLC_2.0 (DOI: 10.5067/SWOT-SLC-2.0))
- Level 2 KaRIn High Rate Water Mask Pixel Cloud Product (SWOT_L2_HR_PIXC_2.0 (DOI: <u>10.5067/SWOT-PIXC-2.0</u>))
- Level 2 KaRIn High Rate Water Mask Pixel Auxiliary Cloud Product (SWOT_L2_HR_PIXCVec_2.0 (DOI: 10.5067/SWOT-PIXCVEC-2.0))
- 4. Level 2 KaRIn High Rate River Single Pass Vector Product (SWOT_L2_HR_RiverSP_2.0 (DOI: <u>10.5067/SWOT-RIVERSP-2.0</u>))
- Level 2 KaRIn High Rate Lake Single Pass Vector Product (SWOT_L2_HR_LakeSP_2.0 (DOI: <u>10.5067/SWOT-LAKESP-2.0</u>))
- 6. Level 2 KaRIn High Rate Raster Product (SWOT_L2_HR_Raster_2.0 (DOI: <u>10.5067/SWOT-RASTER-2.0</u>))
- 1. Level 2 KaRIn High Rate River Average Vector Product (SWOT_L2_HR_RiverAvg_2.0 (DOI: 10.5067/SWOT-RIVERAVG-2.0))
- Level 2 KaRIn High Rate Lake Average Vector Product (SWOT_L2_HR_LakeAvg_2.0 (DOI: <u>10.5067/SWOT-LAKEAVG-2.0</u>))
- Level 2 KaRIn High Rate Floodplain DEM Product* (SWOT_L2_HR_FPDEM_2.0 *available after one year of science orbit products released

Spatial Extent Formats

- Swath half-globe orbit track
- Tile 64x64 km²; half swath width
- Scene 128x128 km², georeferenced; full swath width

scene number x 2 = tile number

Tip: more here <u>https://podaac.github.io/tutorials/quarto_text/SWOT.html#tips-for-swot-hr-spatial-search</u>

File Naming Conventions!

	Product	File Naming Convention				
	(organized by)		Notes	L2_HR_PIXC L2_HR_PIXCVec	PPP_TTTC	PPP = pass number (valid range: 001-584) TTT = tile number (valid range: 001-308)
	L2_HR_RiverSP L2_HR_LakeSP	PPP_CC	PPP = pass number (valid range: 001-584) CC = continent code (options listed below)	nber (valid range: 001-584)L1B_HR_SLCcode (options listed below)(tiles)		C = character L or R corresponding to left or right swaths
	(continent- level swaths)					<i>Ex: 001_120R = pass 001, right swath, tile 120</i>
			AF - Africa EU - Europe and Middle East SI - Siberia AS - Central and Southeast Asia AU - Australia and Oceania SA - South America NA - North America and Caribbean AR - North American Arctic GR - Greenland	L2_HR_Raster (scenes)	PPP_SSS	<pre>PPP = pass number (valid range: 001-584) SSS = scene number (valid range: 001-154) Scenes correspond to 2 x 2 sets of tiles scene number x 2 = tile number Ex: 001_060 = pass 001, scene 60, corresponding to the same location as the PIXC/PIXCVec tile example above.</pre>
			Ex: 013 NA = pass 013, North America			

Find this info in the PO.DAAC Cookbook:

https://podaac.github.io/tutorials/guarto_text/SWOT.html#tips-for-swot-hr-spatial-search

SWOT_L2_HR_PIXC (netCDF)

Description: Point cloud of water mask pixels ("pixel cloud")

Spatial Extent Format: Tile (64x64 km²)

Select Variables: geolocated heights, backscatter, geophysical fields, and flags

Subcollections: N/A

Example river pixels

Colorado River near Austin, TX

SWOT_L2_HR_PIXCVec (netCDF)

Description: Auxiliary info for pixel cloud product indicating water bodies pixels are assigned

Spatial Extent Format: Tile (64x64 km²)

Select Variables: height-constrained pixel geolocation after reach- or lake-scale averaging.

Subcollections: N/A

Colorado River near Austin, TX

SWOT_L2_Raster (netCDF)

Description: Geographically fixed rasterized water surface elevation and inundation extent.

Spatial Extent Format: Scene (128x128 km²)

Select Variables: water surface elevation, area, water fraction, backscatter, geophysical information

Subcollections:

- SWOT_L2_Raster_100m
- SWOT_L2_Raster_250m

Scene near Austin, TX

SWOT_L2_RiverSP (shapefile)

Description: Vectors of river reaches (~10 km long) and nodes (~200 m spacing) in prior river database.

Extent Format: continent-scale swath

Variables: water surface elevation, slope, width, derived discharge*

Subcollections:

- SWOT_L2_RiverSP_reach
- SWOT_L2_RiverSP_node

*included ~2 years after launch

SWOT_L2_LakeSP (shapefile)

Description: Vectors of lakes in prior lake database and detected features not in the prior river or lake databases.

Extent Format: continent-scale swath

Select Variables: water surface elevation, area, derived storage change

- SWOT_L2_LakeSP_obs
- SWOT_L2_LakeSP_prior
- SWOT_L2_LakeSP_unassigned

Observed, Prior & Unassigned Lakes

Physical Oceanography Distributed Active Archive Center

L2_HR_RiverAvg (shapefile)

Cycle average and aggregation of river reach pass data within predefined hydrological basins.

L2_HR_LakeAvg (shapefile)

Cycle average and aggregation of lake pass data within predefined hydrological basins.

L2_HR_FPDEM* (netCDF)

Flood Plain Digital Elevation Map in raster format, derived from multiple cycles of SWOT acquisitions. (~50m resolution). Provides height and quality flag for each pixel.

*available ~2 years after launch

SWOT_L2_RAD_(O/I)GDR (netCDF)

Description: Radiometer brightness temperature and troposphere correction data product - (operational/interim) geophysical data record

Spatial Extent Format: nadir track -

Left and right sides

Select Variables: radiometer wet troposphere correction

Subcollections: N/A

SWOT_L2_NALT_OGDR (netCDF)

Description: Nadir altimetry operational geophysical data record

Spatial Extent Format: nadir track

Select Variables: sea surface height anomaly, significant wave height

- SWOT_L2_NALT_OGDR_SSHA
- SWOT_L2_NALT_OGDR_GDR

SWOT_L2_NALT_IGDR (netCDF)

Description: Nadir altimetry interim geophysical data record

Spatial Extent Format: nadir track

Select Variables: sea surface height anomaly, significant wave height

- SWOT_L2_NALT_IGDR_SSHA
- SWOT_L2_NALT_IGDR_GDR
- SWOT_L2_NALT_IGDR_SGDR

SWOT_L2_NALT_GDR (netCDF)

Description: Nadir altimetry geophysical data record

Spatial Extent Format: nadir track

Select Variables: sea surface height anomaly, significant wave height

- SWOT_L2_NALT_GDR_SSHA
- SWOT_L2_NALT_GDR_GDR
- SWOT_L2_NALT_GDR_SGDR

SWOT_L2_LR_SSH (netCDF)

Description: Sea surface height (SSH) and significant wave height (SWH) over oceans

Spatial Extent Format: 2 km fixed-grid swath (and unsmoothed; 250 m native grid)

Select Variables: SSH, SWH

- SWOT_L2_LR_SSH_Basic
- SWOT_L2_LR_SSH_WindWave
- SWOT_L2_LR_SSH_Expert
- SWOT_L2_LR_SSH_Unsmoothed

Quality Flags!

SWOT Product	Quality Flag Identifier	Values and Meanings			
L2_HR_RiverSP L2_HR_RiverAvg	Var+'_q'	0 = good 1 = suspect - may have large errors			
	Overall Quality Variables: 'reach_q' or 'node_q'	2 = degraded - likely to have large errors 3 = bad - may be nonsensical and should be ignored	L2_NALT_GDR L2_NALT_IGDR	Var + '_qual' Ex: R 'rad_water_vapor_qual' Var + '_qual'	0 = good 1 = bad Varies, see PDDs
	Var + '_q_b'	0 = valid 1 = questionable 2 = invalid	L2_NALT_OGDR L2_RAD_GDR L2_RAD_IGDR L2_RAD_OGDR		
.2_HR_LakeSP .2_HR_LakeAvg	Overall quality Variable: 'quality_f'	0 = good 1 = bad	L2_FPDEM L2_LR_SSH L2_HR_PIXC L1B_HR_SLC L1B_LR_INTF		
2_HR_Raster	Var + '_qual'	0 = good 1 = suspect - may have large errors			
	Ex: 'wse_qual'	2 = degraded - likely to have large errors 3 = bad - may be nonsensical and should be ignored			
	Bitwise:				
	Var + '_qual_bitwise'				

Find this info in the PO.DAAC Cookbook:

https://podaac.github.io/tutorials/quarto_text/SWOT.html#tips-for-quality-flags

More Detailed Information

Product Description Documents (PDDs)

	Dataset	Description	Coverage	Format	Product Description Document (PDD)	Algorithm Theoretical Basis Document (ATBD)
	L2_HR_PIXC	Point cloud of water mask pixels ("pixel cloud") with geolocated heights, backscatter, geophysical fields, and flags.	Point cloud over tile (approx 64x64 km ²); half swath (left or right side of full swath)	netCDF	L2_HR_PIXC Product Description Document	L2_HR_PIXC Algorithm Theoretical Basis Document

• • •

https://podaac.jpl.nasa.gov/SWOT?tab=datasets-information§ions=about