# Measuring river flows from space: when will we no longer need streamgages?

**Barney Austin, Mike Vielleux, Peter Zamora (Hazen)** 

Chad McKenna, Jonathan Tanis, Brennan Davis (GeoSystems Analysis)

Renato Frasson (JPL)



### **Connecting the Dots!**



# Connecting the Dots! Drops

Connectivity is super important!













- Municipalities
- Tribes
- Irrigation Districts
- Compact Commissioners
- Industry
- Universities
- Consultants
- Public and other Stakeholders...





#### **Project Purpose**

Determine if SWOT estimates of water surface elevation in large rivers can be used to derive flows with a degree of accuracy sufficient to estimate Groundwater – Surface Water interaction in large rivers.



#### The Surface Water and Ocean Topography Mission

The SWOT satellite uses radar interferometry technology to provide "spatially continuous" observations of water surface extent, elevation, and slope:

- Launched Dec. 16, 2022
- Observations every 10 days, on average
- Covers 78°N to 78°S
- Data latency goal of <3 days</li>
- 3.5 years nominal mission lifetime
- Partnership between NASA, CNES (France), Canadian Space Agency, and UK Space Agency



Biancamaria, Lettenmaier, and Pavelsky, SoG, 2016

#### **Project Location**

Determine if SWOT estimates of water surface elevation in large rivers can be used to derive flows with a degree of accuracy sufficient to estimate Groundwater - Surface Water interaction in large rivers.





#### Instrumentation

Water <u>surface elevation</u> and <u>flow</u> measurements throughout the reach!

- Pressure transducer (water elevation)
- ADCP (flow)



#### **Spot Water Surface Elevation Measurements**



#### **Pressure Transducers**





#### Flow measurements





#### Flow measurements





#### Field data collection

Water <u>surface elevation</u> and <u>flow measurements</u> throughout the reach for SWOT.

#### For GW-SW interaction:

- Reservoir releases (Caballo res.)
- SW diversions (irrigation)
- Groundwater pumping (irrigation)
- Return flows



#### **EBID** monitoring

#### More data! 539 GB...

CANAL

DRAIN

RIVER

- AMERICAN
- HUDSPETH
- LEASBURG
- MESILLA
- PERCHA
- RESERV
- data\_matrix.xls
- Metadata.doc



RioGrandeAtCanutilloBridge.xls

RioGrandeAtElPaso.xls

RioGrandeAtVadoBridge.xls

RioGrandeAtVintonBridge.xls

RioGrandeBelowMesillaDivDam.xls



Dr. Phil King (EBID hydrologist)

| NMSU Data (cfs) | Date      | Year | Month | Day |
|-----------------|-----------|------|-------|-----|
| 133             | 1/1/1985  | 1985 | 1     | 1   |
| 110             | 1/2/1985  | 1985 | 1     | 2   |
| 98              | 1/3/1985  | 1985 | 1     | 3   |
| 92              | 1/4/1985  | 1985 | 1     | 4   |
| 92              | 1/5/1985  | 1985 | 1     | 5   |
| 90              | 1/6/1985  | 1985 | 1     | 6   |
| 86              | 1/7/1985  | 1985 | 1     | 7   |
| 84              | 1/8/1985  | 1985 | 1     | 8   |
| 86              | 1/9/1985  | 1985 | 1     | 9   |
| 82              | 1/10/1985 | 1985 | 1     | 10  |
| 75              | 1/11/1985 | 1985 | 1     | 11  |
| 72              | 1/12/1985 | 1985 | 1     | 12  |
| 81              | 1/13/1985 | 1985 | 1     | 13  |
| 82              | 1/14/1985 | 1985 | 1     | 14  |
| 102             | 1/15/1985 | 1985 | 1     | 15  |
| 96              | 1/16/1985 | 1985 | 1     | 16  |
| 88              | 1/17/1985 | 1985 | 1     | 17  |
| 86              | 1/18/1985 | 1985 | 1     | 18  |
| 82              | 1/19/1985 | 1985 | 1     | 19  |
| 77              | 1/20/1985 | 1985 | 1     | 20  |
| 70              | 1/21/1985 | 1985 | 1     | 21  |
| 79              | 1/22/1985 | 1985 | 1     | 22  |
| 74              | 1/23/1985 | 1985 | 1     | 23  |
| 75              | 1/24/1985 | 1985 | 1     | 24  |
| 70              | 1/25/1985 | 1985 | 1     | 25  |
| 75              | 1/26/1985 | 1985 | 1     | 26  |
| 77              | 1/27/1985 | 1985 | 1     | 27  |
| 81              | 1/28/1985 | 1985 | 1     | 28  |
| 104             | 1/29/1985 | 1985 | 1     | 29  |
| 115             | 1/30/1985 | 1985 | 1     | 30  |
| 113             | 1/31/1985 | 1985 | 1     | 31  |
| 88              | 2/1/1985  | 1985 | 2     | 1   |
| 7∆              | 2/2/1985  | 1985 | 2     | 2   |



#### **Quantifying GW-SW Interaction**



# Theiss method

#### **HydroGeoSphere Model**

3D unstructured mesh Static model (for now) GW-SW interaction





#### **Project Partners**

Texas Water Development Board (Chair)
World Wildlife Fund
North American Development Bank
International Boundary Water Commission

**Elephant Butte Irrigation District Sustainable Waters** 















Hazen

#### Can satellites replace in-situ flow measurements?



\$35k+ install \$30k+ /yr O&M

- In some instances, we think so.
- It will be a long time before all streamgages are replaced
  - Latency and temporal resolution remain issues
  - Minimum channel width also an issue
  - Flood forecasting is a challenge!
- Local observations (channel geometry, roughness, etc) will improve the SWOT estimates

Hazen 19

## Hazen

Barney Austin, PhD, PE baustin@hazenandsawyer.com 512-826-2604