Urban Rainfall Modification as Future Water Resource Solutions

Dev Niyogi University of Texas at Austin

Also representing UNESCO- UT City CoLab (Endorsed by WWRP) and WCRP Atmospheric Urban Digital Twins (AUDT) / Digital Earth Lighthouse Activity

William Stamps Farish Chair Professor and UNESCO Chair on AI, Water, and Cities
University of Texas Extreme Weather and Urban Sustainability (TExUS) Lab
https://texuslab.org/
https://texuslab.org/
https://texuslab.org/
https://texuslab.org/

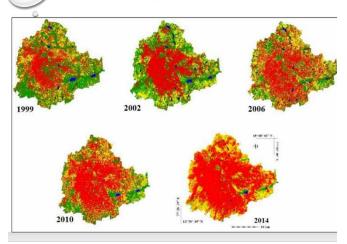
Email: happy1@utexas.edu

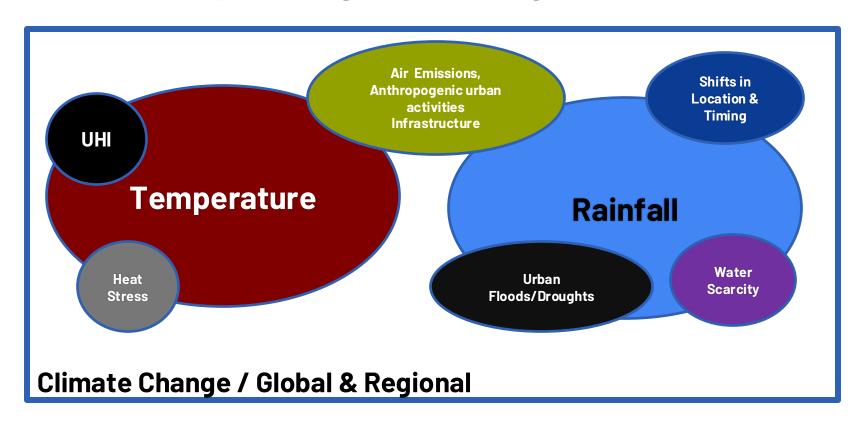
University of Texas at Austin

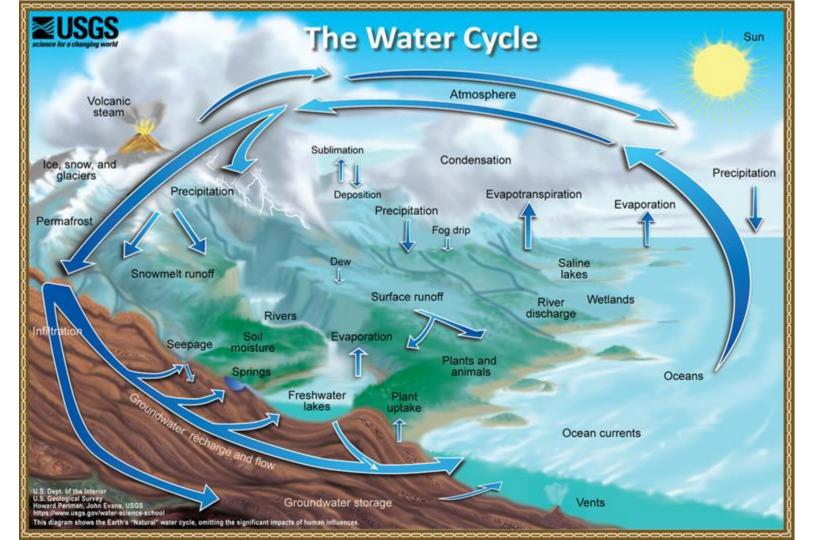
City

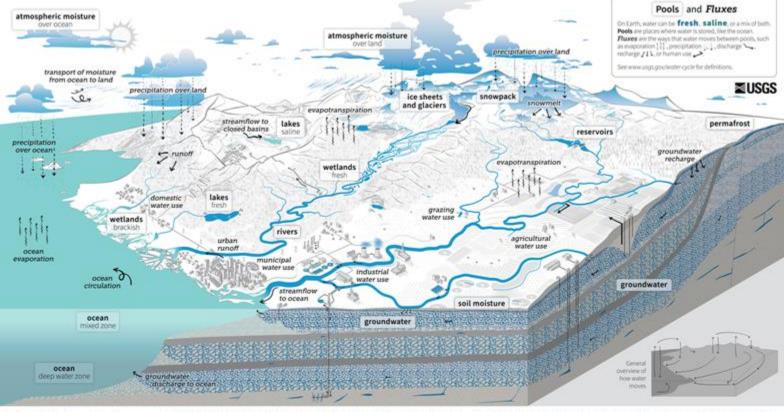
Civitas- organized community

The Global City – New York's GDP was USD 2.63 trillion in 2009. Its economy is larger than some countries' national economy such as Italy, Spain, Canada, Russia, South Korea, Brazil, and India. Photo 5: UNH-ABIRIATIX. Q. Zhang



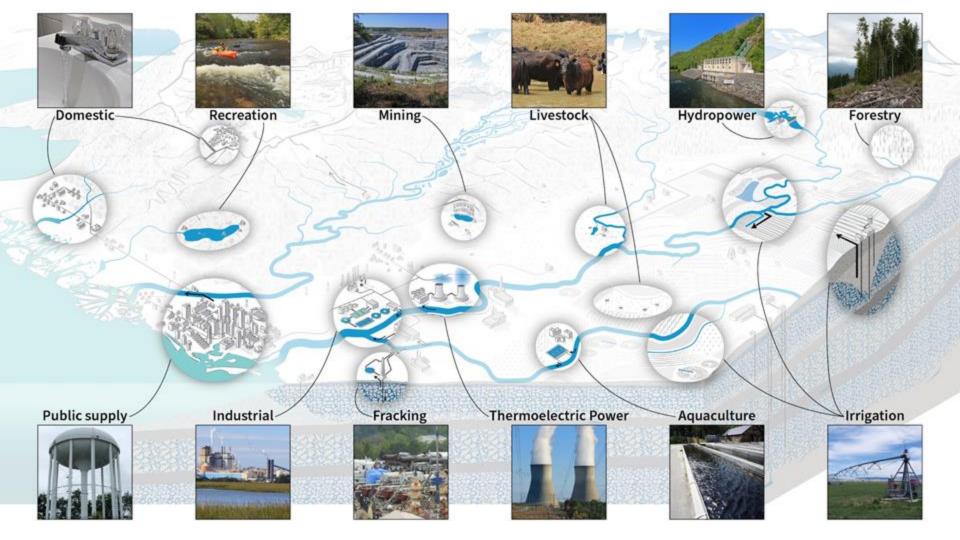



http://atlasofurbanexpansion.org/cities/view/London


Bangalore city - Urbanization

Conceptual diagram of emergent Urban Risks

The Water Cycle


The water cycle describes where water is found on Earth. and how it moves. Water can be stored in the atmosphere, on Earth's surface, or below the ground. It can be in a liquid, Lakes, artificial reservoirs, rivers, wetlands, and in soil as solid, or gaseous state. Water moves between the places it is solf moisture. Deeper underground, Siguid water is stored stored at large scales and at very small scales. Water moves as groundwater in aguifers, within the cracks and pores of naturally and because of human interaction, both of which affect where water is stored, how it moves, and how clean it glaciers, and snowpack at high elevations or near the

Liquid water can be fresh, saline (sality), or a mix (brackish). Ninety-six percent of all water is saline and stored in oceans. Places like the ocean, where water is stored, are called pools. On land, saline water is stored in saline takes, oceans and transports water vapor in the atmosphere. whereas fresh water is stored in liquid form in freshwater rock. The solid, frazen form of water is stored in ice sheets. Earth's poles. Frozen water is also found in the soil as permafrest. Water vapor, the gaseous form of water, is stored as atmospheric moisture over the ocean and land.

As it moves, water can transform into a liquid, a solid, or a gas. The different ways in which water moves between pools are known as fluxes. Circulation mixes water in the Water moves between the atmosphere and the Earth's surface through evaporation, evapotranspiration, and precipitation. Water moves across the land surface through snowmelt, runoff, and streamflow. Through infiltration and groundwater recharge, water moves into the ground. When underground, groundwater flows within aquifers and can return to the surface through springs or from natural groundwater discharge into rivers and oceans.

to store water, and drain water from wetlands for development. We use water from rivers, lakes, reservoirs, and groundwater aquifers. We use that water (1) to supply our homes and communities: (2) for agricultural irrigation. Runoff carries chemicals, sediment, and sewage into rivers. and grazing livestock; and (3) in industrial activities like thermoelectric power generation, mining, and aquaculture. is in each pool (water quantity). Water availability also depends on when and how fast water moves (water timing), how much water is used (water use), and how clean the water is (water quality).

Humans after the water cycle. We redirect rivers, build dams. Human activities affect water quality. In agricultural and urban areas, irrigation and precipitation wash fertilizers and pesticides into rivers and groundwater. Power plants and factories return heated and contaminated water to rivers. and takes. Downstream from these types of sources, contaminated water can cause harmful algal blooms. The amount of available water depends on how much water spread diseases, and harm habitats. Climate change is also affecting the water cycle. It affects water quality, quantity, timing, and use. Climate change is also causing ocean acidification, sea level rise, and extreme weather. Understanding these impacts can allow progress toward sustainable water use.

Science to Engineering Solutions

How to move from science to engineering?

Continued understanding of processes and scale interactions

- offer sustained evidence
- "similar to pharma drug discovery"

Br J Pharmacol. 2011 Mar; 162(6): 1239–1249.

doi: 10.1111/j.1476-5381.2010.01127.x

Principles of early drug discovery

JP Hughes, 1 S Rees, 2 SB Kalindjian, 3 and KL Philpott3

▶ Author information ▶ Article notes ▶ Copyright and License information PMC Disclaimer

Associated Data

Supplementary Materials

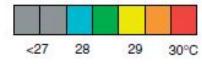
Abstract Go to: >

Developing a new drug from original idea to the launch of a finished product is a complex process which can take 12–15 years and cost in excess of \$1 billion. The idea for a target can come from a variety of sources including academic and clinical research and from the commercial sector. It may take many years to build up a body of supporting evidence before selecting a target for a costly drug discovery programme. Once a target has been chosen, the pharmaceutical industry and more recently some academic centres have streamlined a number of early processes to identify molecules which possess suitable characteristics to make acceptable drugs. This review will look at key preclinical stages of the drug discovery process, from initial target identification and validation, through assay development, high throughput screening, hit identification, lead optimization and finally the selection of a candidate molecule for clinical development.

Keywords: drug discovery, high throughput screening, target identification, target validation, hit series, assay development, screening cascade, lead optimization

12- 15 years!

PMCID: PMC3058157


PMID: 21091654

Likely similar time period needed for science to implementation to regional / engineering solutions in our domain

Nighttime

How can we Speed-up "Disruption" or R20 in

Urban Weather and Climate Sciences?

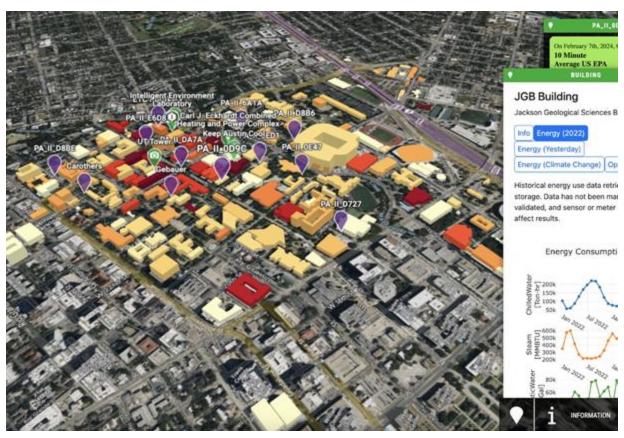
AUSTIN

East Austin neighbor says
CapMetro bus stop needs
more shade coverings;
officials say they're working
on it

by: <u>Candy Rodriguez</u> Posted: Jul 15, 2022 / 09:50 AM CDT Updated: Jul 15, 2022 / 10:37 AM CDT

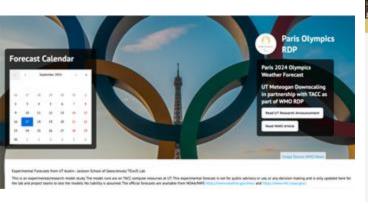
https://www.kxan.com/news/local/austin/east-austin-neighbor-says-capmetro-bus-stop-needs-more-shade-coverings-officials-say-theyre-working-on-it/

Cool Pavement Priority



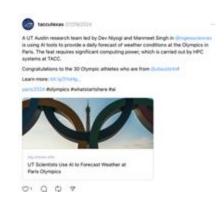
Atmospheric And Urban Digital Twins

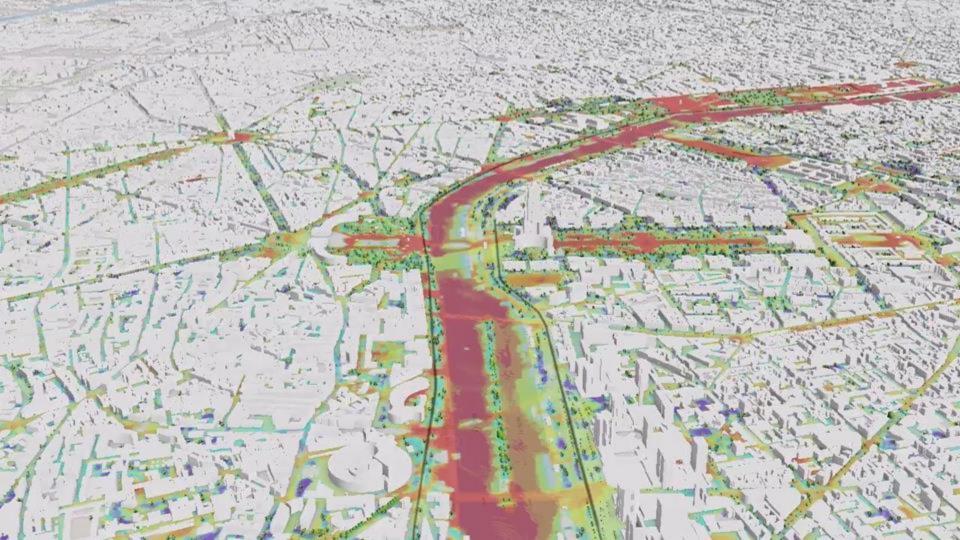
- AUDTs are digital twins that capture the dynamic interplay between the urban scape and atmospheric elements.
- UTwin is a digital twin of the UT Austin campus.
- It provides historic and realtime energy use data, as well as energy demand forecasts

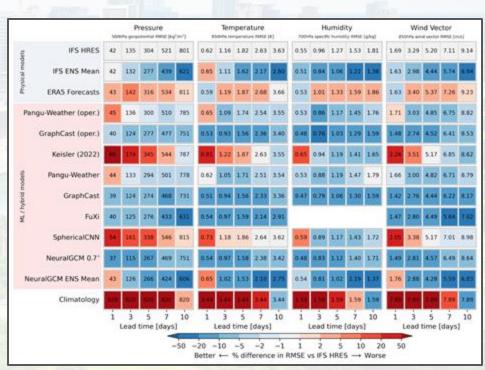

NSF, DOE, Bentley Systems, WCRP Digital Earth Lighthouse Activity

UTwin

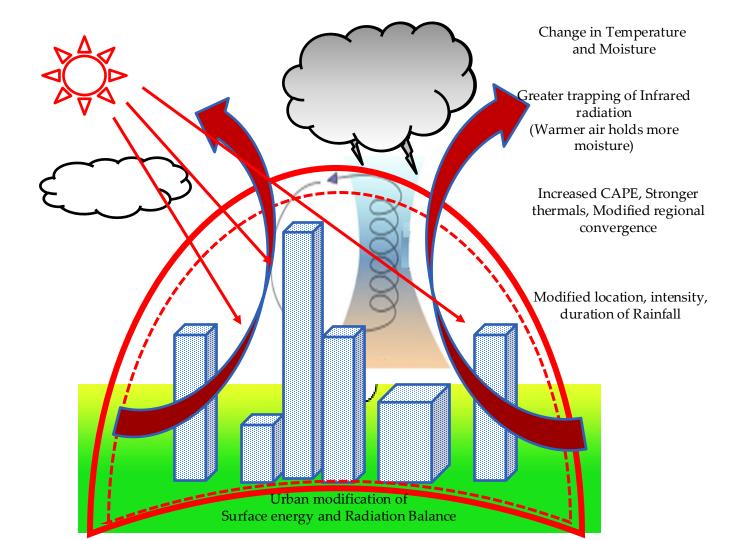
THERMALSCAPE of Austin tinyurl.com/colabthermalvr


Paris 2024 Research Demonstration Project



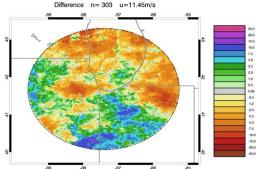

UT-HindCast: Google Graphcast based 45 year, global, hindcast Dataset from The University of Texas at Austin

Hindcast Generated from Al model (1979–2024)

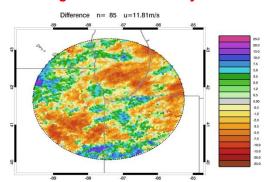

- Daily 15-day forecasts, initialized at 00 UTC ERA5.
- Produced at 0.25° x 0.25° resolution (global).
- Uses Graphcast operational model

Computational Performance

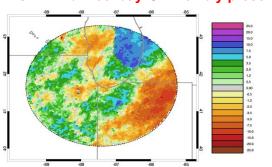
- Texas Advanced Computing Center's NVIDIA H100 GPU.
- <4 minutes to complete a 15day forecast.

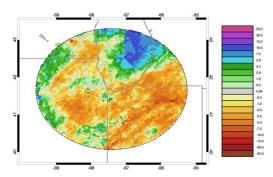


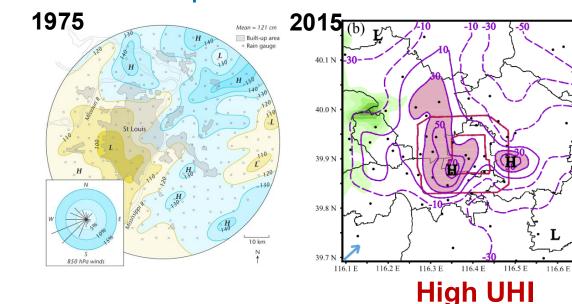
Performance of AI models (Source: weatherbench 2) 1979- 2017 global data (Models have different resolutions)

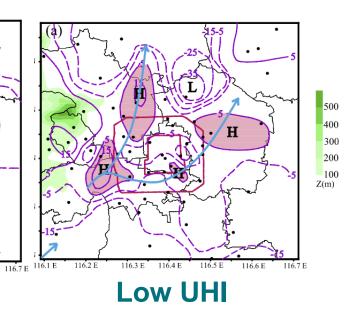


Chicago/ La Porte Observational Analysis (Reassessment with new knowledge and technology)




W to E moving → weaker anomaly


SW Wind Weekday → Anomaly present



SW Wind Weekend → NO ANOMALY

Urban Precipitation and Urban Heat are interlinked

Huff et al., 1971–1975 Summary of METROMEX Volume 1

Dou et al., 2015 Journal of Applied Meteorology and Climatology

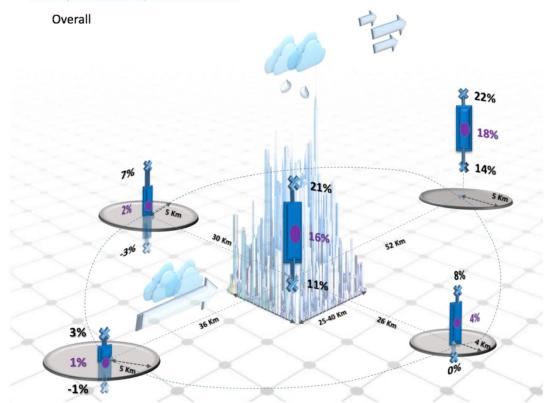
- Urban boundary layer (UBL) influence on convective precipitation has been studied for >50 years, but is under researched
- METROMEX (inland St. Louis): Urban modification does exist, combination of urban heat island (UHI), mechanical turbulence by buildings, and/or industrial aerosol production
- Beijing (inland): urban precipitation is modulated by UHI intensity

scientific reports

Explore content > About the journal > Publish with us >

nature > scientific reports > articles > article

Article | Open access | Published: 13 May 2019


Meta-analysis of urbanization impact on rainfall modification

Jie Liu & Dev Niyogi ☑

Scientific Reports 9, Article number: 7301 (2019) | Cite this article

Figure 2

From: Meta-analysis of urbanization impact on rainfall modification

Precipitation changes over urban areas and for surrounding landscape. The bars indicate the sample standard deviation for the precipitation change, and circles correspond to the mean change in precipitation location. On average, urban areas and the surrounding region experienced precipitation increases. The largest signal noted in a number of studies, was prominently in the downwind region of the city and experienced the highest rainfall change: 18% increase on average, (a range of 14 to 22% with one standard deviation). The distance over which these changes occurred (mostly increases in rainfall) is approximately 52 km downwind, and about 31 to 41km upwind.

EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES OPEN ACCESS

Global scale assessment of urban precipitation anomalies

Xinxin Sui 6 a, Zong-Liang Yang 6 b, Marshall Shepherd c, and Dev Niyogi 6 a,b,1

Edited by Karen Seto, Yale University, New Haven, CT; received July 24, 2023; accepted June 7, 2024

September 9, 2024 121 (38) e2311496121

Significance

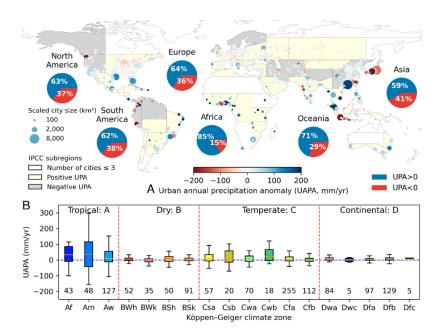
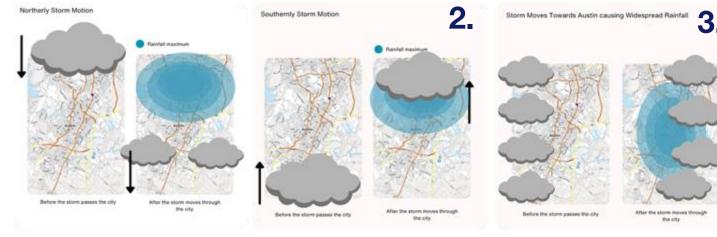
This research reports a global analysis of urban precipitation anomalies encompassing over one thousand cities worldwide. While earlier studies have focused on the impact of urbanization on precipitation for specific cities or isolated thunderstorm cases, our research breaks innovative ground by mapping global urban precipitation hotspots over the past 20 y. This study provides global evidence of noticeable urban precipitation anomalies, especially in hot and humid climates. Beyond the anticipated influence of local climate, our findings reveal that higher levels of urbanization enhance these urban precipitation anomalies. This research not only deepens our understanding of how cities shape precipitation but also establishes the groundwork for incorporating urbanization considerations into future precipitation projections.

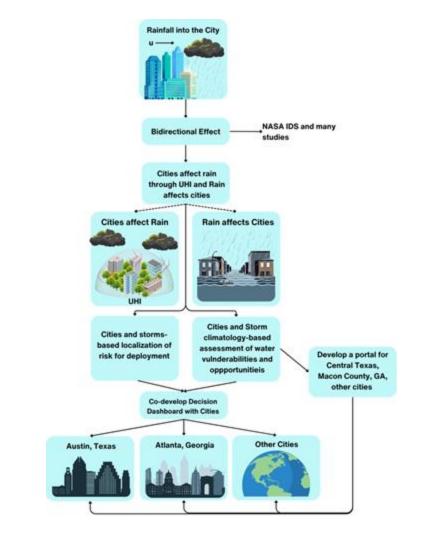
The Washington Post

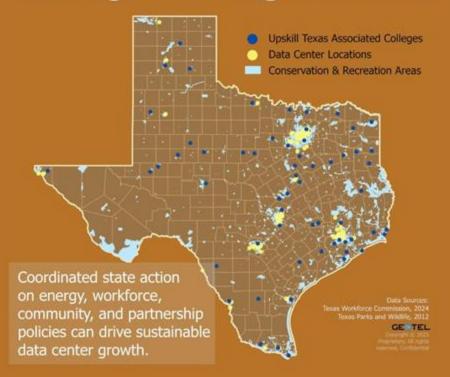
Climate Solutions

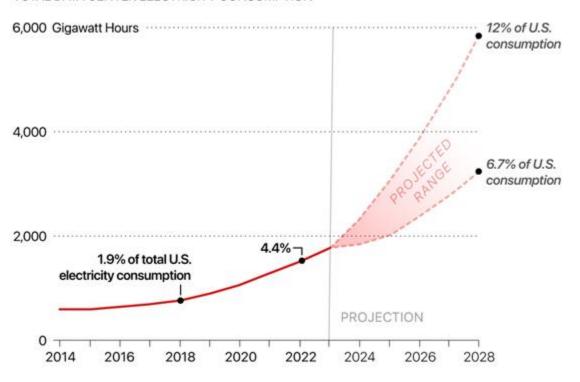
Why cities are getting more rainy

A study has found most cities receive significantly more rain than nearby rural regions, an effect that has become more pronounced over the past two decades.

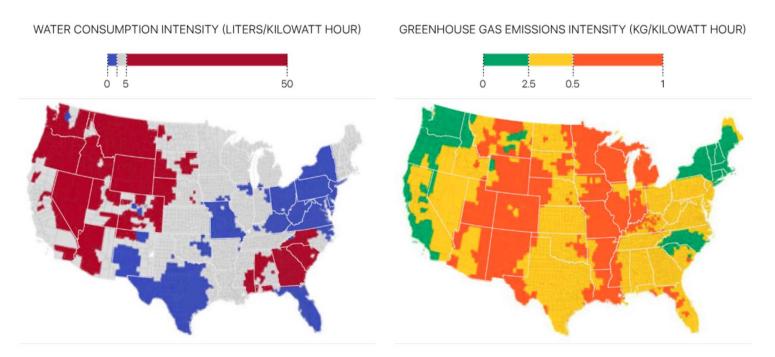


Fig. 1. Global urban annual precipitation anomalies. The urban annual precipitation anomalies according to continents and climate zones. (A) The color of the base map shows that the average of urban precipitation anomalies in the IPCC subregion is positive or negative. Each dot on the base map indicates one city, and the size and color of the dot describe the size and precipitation anomaly extent of the city. The pie charts show the percentage of cities with positive and negative (more or less precipitation over urban grids) urban precipitation anomalies in each continent (the pie charts for each IPCC subregion are shown in SI Appendix, Fig. S15). (B) The box plot for urban annual precipitation anomalies for cities in different climate zones. The numbers above the axis are the number of cities in that climate zone.



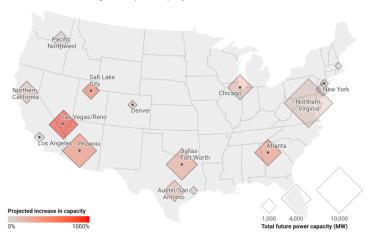

Texas as a Data Center Powerhouse Map of Existing Data Centers and Fiber Infrastructure Across Texas Data Source: GeoTel, 2025 Abundant land & power Pro-business policies; Vast fiber connectivity

Guiding Texas' Digital Growth

Data centers claiming a larger share of power use


TOTAL DATA CENTER ELECTRICITY CONSUMPTION

Source: 2024 United States Data Center Energy Usage Report, Lawrence Berkeley National Laboratory


How much water use and pollution do data centers cause? Location matters.

Two measures of the intensity of resource-use by data centers look at factors associated with the electricity needed to power them. Water consumption intensity measures the quantity of water needed to cool the power stations sending electricity to the grid (thus it does not include water used to cool the servers themselves). Greenhouse gas emissions intensity reflects the type of power plant supplying the data center; fossil-fuel powered plants generate more planet-warming emissions in the process of creating electricity.

Data Center Hot Spots in the U.S.

Areas with fastest data-center growth and planned capacity

Map: & the West • Source: Upwind, JLL 2024 Data Center Report • Get the data • Download image • Created with Datawrapper

Future planned capacity relative to current capacity. Western areas are in bold

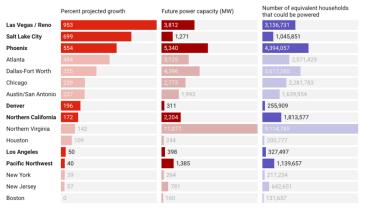
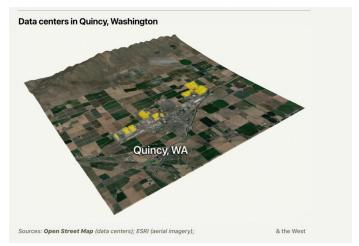



Chart: & the West • Source: EIA and JLL via Upwind • Get the data • Download image • Created with Datawrapper

Data centers in Santa Clara, California

Sources: Open Street Map (data centers); ESRI (aerial imagery);

& the West

Data centers in Santa Clara, California

Sources: Open Street Map (data centers); ESRI (aerial imagery);

A Giant New AI Data Center Is Coming to the Epicenter of America's Fracking Boom

CoreWeave and Poolside announce partnership for a data center built on a sprawling ranch in West Texas

Two data centers in San Antonio have used 463 million gallons of water in the past two years.

Use Cities affect Rainfall science to build new water resources avenues that become part of future strategies for water extremes from floods to droughts.

Interested?

Contact dev.niyogi@jsg.utexas.edu website: NIYOGI.dev

Figure resources:

https://waterdata.usgs.gov/blog/water-cycle-release/ https://andthewest.stanford.edu/2025/thirsty-for-power-and-water-ai-crunching-data-centers-sprout-across-the-west/