Higher-Resolution Soil Moisture for Hydrological and Agricultural Applications in the United States

Rajat Bindlish¹, Pang-Wei Liu¹, Zhengwei Yang², Sujay V. Kumar¹ 1. NASA's Goddard Space Flight Center, Greenbelt, MD, USA. 2. USDA, National Agricultural Statistics Service, Washington D.C., USA.

Project Goals

• Project Goal:

To develop and ingest high spatio-temporal soil moisture at 1 km resolution with 2-3 days revisit for USDA Crop Condition and Soil Moisture Analytics (Crop-CASMA) system

• Project Motivation:

- USDA NASS currently uses **weekly surveys** that provide **qualitative** soil moisture at **county scale**
- Remote sensing offers **more frequent quantitative** estimates at **high resolution** (1 km)
 - Improvement of the soil moisture assessments at field scale (1 km)
 - Remote sensing can provide soil moisture at greater temporal repeat (2-3 days)
- Improvement of crop yield forecasts and assessments by incorporating the high resolution soil moisture into the USDA NASS Crop-CASMA system.

Methodology

Thermal Inertia Approach

4, 4, 57

- Wetter soil has lower heat transport on the surface and smaller temperature dynamics.
- $-\sigma_{\theta,1km}^{T} = f(\Delta LST_{MODIS}, NDVI_{MODIS})$
- Noncoincident satellite revisits and cloud cover result in missing data or gaps in the product.

Soil Texture Approach

- $\sigma_{\theta,1km}^{s} = f(\Theta_{SMAP}, Soil hydraulic parameters)$
- Model function was derived from Genichten-Mualem model and hydraulic parameters were from soil texture using pedotransfer equations.

Thermal Hydraulic disaggregation of Soil Moisture (THySM)

 During strong heat transport conditions the impact from thermal inertia is weighted higher; while soil texture approach is weighted higher when soil is wet based upon field capacity.

$$\theta_{1km}^{HY} = \theta_{1km}^{T} \cdot \frac{W_{T}}{W_{T} + W_{S}} + \theta_{1km}^{S} \cdot \frac{W_{S}}{W_{T} + W_{S}}$$
$$w_{T} = \frac{LH + SH}{max(Net \ Rad)}; \quad w_{S} = \frac{\theta_{1km}^{S}}{FC}$$

High Resolution Soil Moisture - Validation

4 4.57

Assessment using observations from 04/01/2015-03/31/2019

	SMAP Enhanced (33 km)*				SMAP/Sentinel1 (1 km)				THySM (1 km)			
	ubRMSE	RMSE	Bias	R	ubRMS E	RMSE	Bias	R	ubRMS E	RMSE	Bias	R
Walnut Gulch	0.026	0.030	0.015	0.80	0.047	0.067	0.035	0.56	0.036	0.051	0.025	0.62
Reynolds Creek	0.040	0.042	-0.013	0.65	0.086	0.115	-0.026	0.56	0.064	0.086	-0.026	0.69
Little Washita	0.021	0.028	-0.018	0.91	0.054	0.087	-0.017	0.64	0.038	0.063	-0.007	0.79
Fort Cobb	0.029	0.055	-0.047	0.88	0.052	0.086	-0.021	0.68	0.042	0.079	-0.028	0.69
Little River	0.036	0.069	0.059	0.78	0.046	0.123	0.112	0.65	0.044	0.128	0.119	0.71
South Fork	0.052	0.064	-0.038	0.71	0.087	0.112	-0.057	0.49	0.072	0.099	-0.057	0.53
Saint Joseph's	-	-	-	-	0.061	0.086	0.021	0.59	0.057	0.082	0.014	0.64
TxSON	0.021	0.023	-0.008	0.93	0.041	0.070	-0.026	0.74	0.037	0.067	-0.013	0.84
Overall	0.032	0.044	-0.007	0.81	0.059	0.093	0.003	0.61	0.049	0.082	0.003	0.69

EARTH SCIENCES

Assessment of THySM

- THySM is developed by disaggregating SMAP in the CONUS domain at a spatial resolution of 1 km.
- ThySM has been evaluated using *in situ* measurements from 7 SMAP core validation sites (dense network) and 153 stations of USDA SCAN and NOAA CRN (sparse network).
- Overall, unRMSE of THySM is **0.048** m³/m³.
- THySM is ingested into NASS's Crop Condition and Soil Moisture Analytics (Crop-CASMA) system.
- Data available at https://portal.nccs.nasa.gov/datashare/thysm/THYSM
 PM_DAILY/

Liu *et al.,* 2022. Thermal hydraulic disaggregation of SMAP soil moisture over continental United States. *IEEE JSTARS*. Vol. 15, pp. 4072-4093. Zhang *et al.,* (2022). Crop-CASMA: A web geoprocessing and map service based architecture and implementation for serving soil moisture and crop vegetation condition data over U.S. croplands. *Int. J. of Appl. Earth Observ. & Geoinfo*. Vol. 112, pp. 102902.

Crop-CASMA Soil Moisture data products

- Soil moisture data
 - SMAP 9 km original data, aggregated daily, weekly top and rootzone soil moisture data
 - High resolution 1 km daily, weekly topsoil moisture data
 - 1 km & 9km daily, weekly top and rootzone soil moisture anomaly data
 - Weekly 1 km topsoil & 9 km top and rootzone categorical soil moisture condition data

High Resolution Soil Moisture for USDA

Soil Moisture Anomaly map for CONUS (8/10/2023) and soil moisture maps for CA and MS.

High resolution soil moisture product has been implemented for agricultural applications by USDA.

• More than 50% water is used for agricultural purposes in Western states

GODDARD

- Operationally used by USDA NASS for their weekly reports on agricultural conditions for improved decision making (https://cloud.csiss.gmu.edu/Crop-CASMA/).
- SMAP soil moisture was operationally ingested by USDA demonstrating the value of NASA remote sensing observations for societal benefit
- Project was funded by WWAO/Applied science program; operational data use continues.

Planting Date and Corn Growth Stages

- \$33 billion loss to agriculture sector due to 2019 floods over mid-west US
- Corn planting date determined based on soil moisture, temperature and soil trafficability
- Corn phenology was estimated using GDD based on estimated planting date.
- In the figure, horizontal bar charts show the earliest and latest dates of the growth stage, and when 20, 50, and 80 percentiles of agricultural pixels reach the GDD requirements.
- Relatively delayed growth at every stage by 20-30 days in 2019 as compared to climatology.
- Overall, the estimated phenology timelines agree with NASS survey reports for climatology and 2019 with RMSDs of 4.5 and 5.6 days, respectively.

4. 41.57

GODDARD

- Leverage complementarities of state-of-the-art hydrology and crop models for crop yield simulation and predictions, and for scenario studies.
- Hydrology models lack crop growth models; Crop model lack stat-of-the-art hydrology
- First ever implementation of a process-oriented coupled hydrology and crop model
- Develop an Land-Agriculture Information System (LAIS) that leverages complementarities of hydrology and agriculture models (LIS and DSSAT). **Geophysical Variables**
- Built upon NASA's Land Information System (LIS), the framework is capable of assimilating our high-resolution soil moisture published on Crop-CASMA and other satellite-based soil moisture observations.
- Collaborative project between NASA Goddard, GISS, and USDA NASS funded by ESTO AIST program.

GODARD EARTH SCIENCES

Impact of Soil Moisture on Agriculture

- Simulated crop yields for corn and soybean follow soil moisture conditions, indicating high sensitivity of soil moisture to crop yields.
- The developed LAIS provides a system for studying impacts of various weather/soil conditions on agriculture.

