

NASA Western Water Applications Office

Award Number 1667355

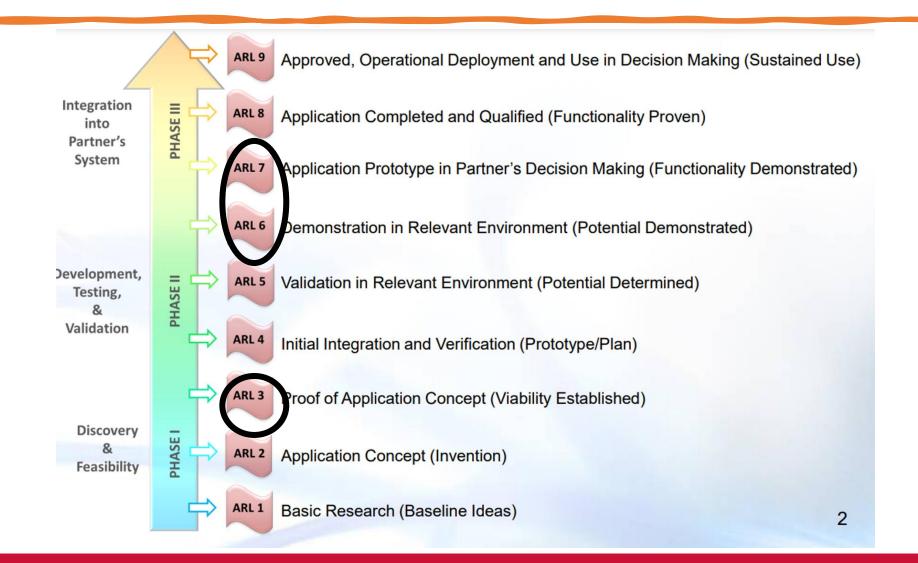
Final project presentation

Michael P. Brady, Kirti Rajagopalan, Hossein Noorazar, Supriya Savalkar,

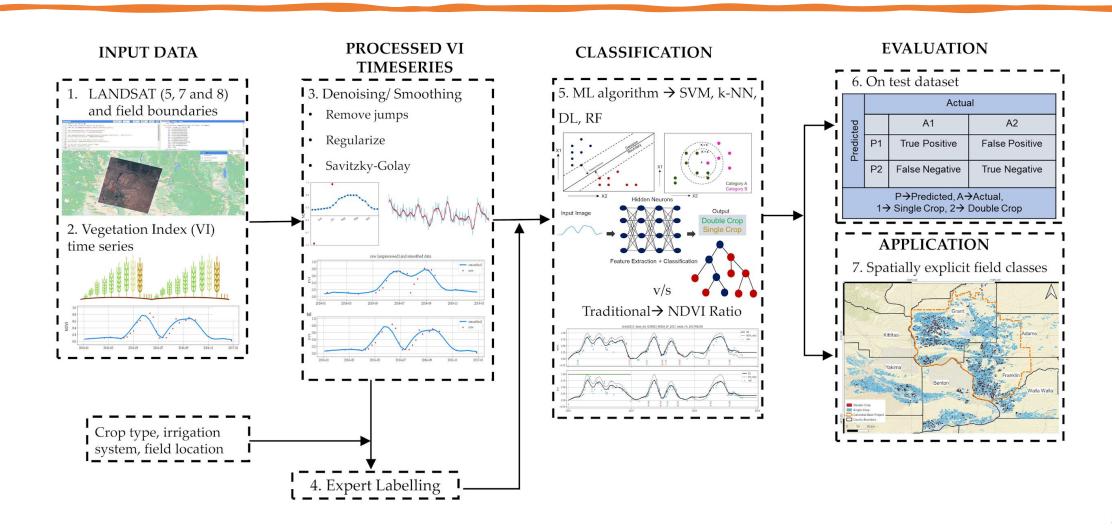
Perry Beale, and Mingliang Liu

Long-term mapping and trend analysis of double-cropping extent in the Columbia River Basin with Landsat and Google Earth Engine.

ARL 3 to 6/7



The Process



Overall Accuracies

actual	predicted	SVM	DL	kNN	RF	NDVI-ratio
single	single	556 - 563	555 - 568	554 - 562	562 - 571	517-536
double	double	46 - 55	49 - 55	43 - 48	41 - 44	43-48
single	double	10 - 17	5 - 18	11 - 19	2 - 11	37-56
double	single	4 - 13	4 - 10	11 - 16	15 - 18	11-16
# errors		15 - 30	9 - 25	25 - 33	20 - 29	52-67
accuracy		95 - 98%	96 - 99%	95 - 96%	95 - 97%	89-91%
user acc.		73 - 84%	74-92%	70 - 80%	79 - 95%	46-54%
producer acc.		78 - 93%	83 - 93%	73 - 81%	70 - 75%	72-81%

Overall accuracies a good across all models

Even the rule-base NDVI method fares decent

But misleading, as majority data points are single crops

Focusing on just the double-cropped category

actual	predicted	SVM	DL	kNN	RF	NDVI-ratio
single	single	556 - 563	555 - 568	554 - 562	562 - 571	517-536
double	double	46 - 55	49 - 55	43 - 48	41 - 44	43-48
single	double	10 - 17	5 - 18	11 - 19	2 - 11	37-56
double	single	4 - 13	4 - 10	11 - 16	15 - 18	11-16
# errors		15 - 30	9 - 25	25 - 33	20 - 29	52-67
accuracy		95 - 98%	96 - 99%	95 - 96%	95 - 97%	89-91%
user acc.		73 - 84%	74-92%	70 - 80%	79-95%	46-54%
producer acc.		78 - 93%	83 - 93%	73 - 81%	70 - 75%	72-81%

Producer accuracy: what fraction of ground-truth double crop fields were correctly classified?

Deep Learning and SVM models -> better performance

Focusing on just the double-cropped category

actual	predicted	SVM	DL	kNN	RF	NDVI-ratio
single	single	556 - 563	555 - 568	554 - 562	562 - 571	517-536
double	double	46 - 55	49 - 55	43 - 48	41 - 44	43-48
single	double	10 - 17	5 - 18	11 - 19	2-11	37-56
double	single	4 - 13	4 - 10	11 - 16	15 - 18	11-16
# errors		15 - 30	9 - 25	25 - 33	20 - 29	52-67
accuracy		95 - 98%	96 - 99%	95 - 96%	95 - 97%	89-91%
user acc.		73 - 84%	74 - 92%	70 - 80%	79 - 95%	46-54%
producer acc.		78 - 93%	83 - 93%	73 - 81%	70 - 75%	72-81%

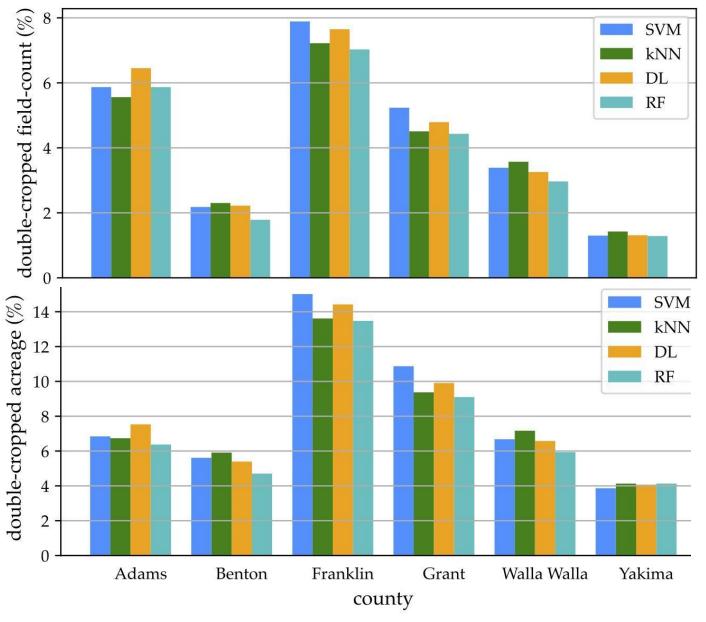
User accuracy: what fraction of mapped double crop fields were correctly classified?

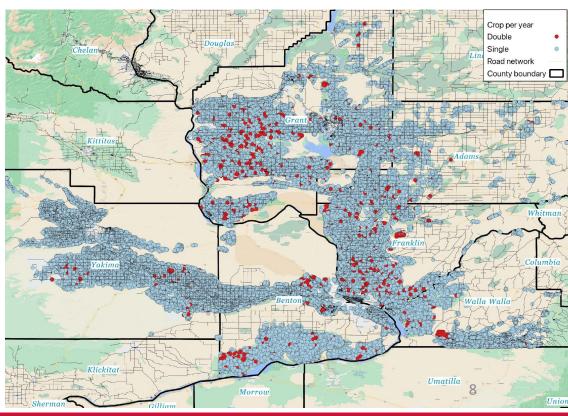
Random Forest and Deep Learning models -> better performance NDVI-ratio overestimating double cropped extent

Summary and comparison with a recent global-scale product

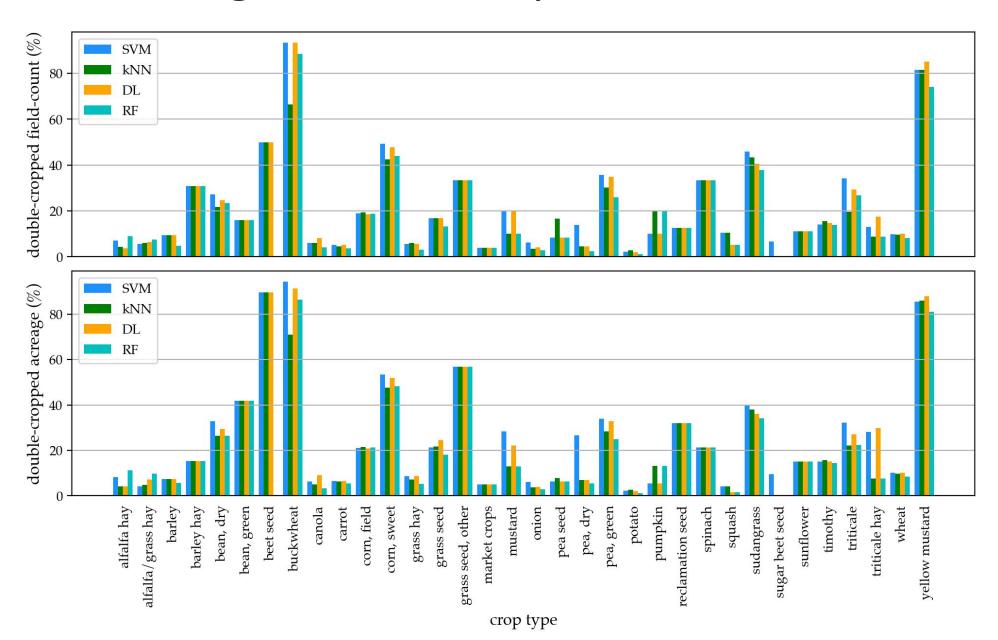
- ☐ Overall, our current estimates are that ~10% of the study region is double cropped
- ☐ The global product predicted ~2.5 times the double cropped extent as compared to our work
 - -> Consistent with our observation of overestimation
 - ->Perennial fields incorrectly coded as double cropped

Qualitative agreement: regions

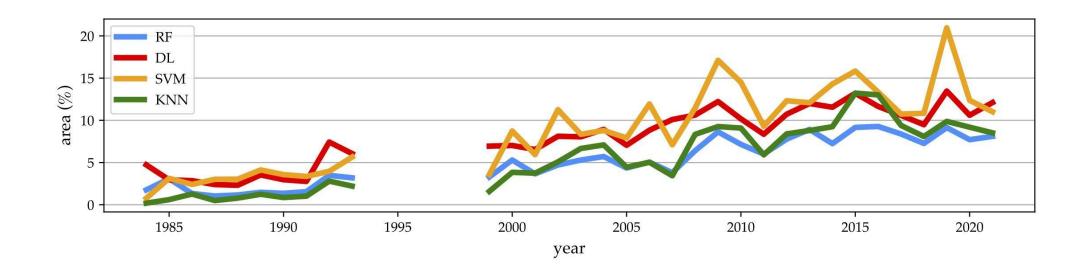




Qualitative agreement: crops



Long-term trend



Workflow for WSDA

- Python workflow and documentation as a Google CoLab notebook
- Shared with the end user
- Google payments to be explored
- Initial few applications will be in collaboration with WSU as training continues
- Interest in expanding to Oregon and California

Implementation: CoLab Notebook

▼ Mount Google Drive and import my Python modules

Here we are importing the Python functions that are written by Hossein Noorazar and are needed; NASA core and NASA plot core.

0.75

0.00

-0.25

-0.50

2017-01

2017-03

2017-05

Note: These are on Google Drive now. Perhaps we can import them from GitHub.

```
# Mount YOUR google drive in Colab
from google.colab import drive
drive.mount('/content/drive')
import sys
sys.path.insert(0, "/content/drive/My Drive/Colab Notebooks/")
import NASA_core as nc
import NASA_plot_core as ncp
import GEE_Python_core as gpc
```

Mounted at /content/drive

Please tell me where to look for the shapefile and other directories

```
[ ] drive_pre = "/content/drive/My Drive/"
    shp_path_base = drive_pre + "NASA_trends/shapefiles/"
    out_dir_base = drive_pre + "colab_outputs/"
    Colab_NB_dir = drive_pre + "Colab_Notebooks/"

import os
    os.chdir(Colab_NB_dir)
# !ls
```

```
# Pick a field
    an ID = IDs[3]
   a field = regular df[regular df.ID==an ID].copy()
   a_field.sort_values(by='human_system_start_time', axis=0, ascending=True, inplace=True)
   fig, ax = plt.subplots(1, 1, figsize=(12, 3),
                          sharex='col', sharey='row',
                          gridspec kw={'hspace': 0.2, 'wspace': .05});
   ax.grid(True);
   ax.plot(a field['human system start time'], a field[VI idx],
           linestyle='-', linewidth=3.5, color="dodgerblue", alpha=0.8,
           label=f"smooth {VI idx}")
   # Raw data where we started from
   raw = reduced[reduced.ID==an ID].copy()
   raw.sort_values(by='human_system_start_time', axis=0, ascending=True, inplace=True)
   ax.scatter(raw['human system start time'], raw[VI idx], s=15, c='#d62728', label=f"raw {VI idx}");
   label = list(predictions.loc[predictions.ID==an ID, "SVM NDVI preds"])[0]
   ax.set title(f"SVM prediction is {label }.")
   ax.legend(loc="lower right");
   plt.ylim([-0.5, 1.2]);
Г⇒
```

SVM prediction is 1.

2017-07

2017-09

smooth NDVI

20178-01

raw NDVI

2017-11

Future Applications and Extensions

 Water supply and demand forecasts – Office of the Columbia River (WA DOE)

Regional crop mix shifts and climate change

Trial methodology in Oregon – Oregon Water Resources
 Department